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Suppose that E is an elliptic curve over a number

field K, and let K be an algebraic closure of K (e.g.,

the field of complex algebraic numbers). For each

prime `, the group E[`] of `-division points of E

(with coordinates in K) is a 2-dimensional vector

space over the field F` with ` elements. The action

of GK := Gal(K/K) on E[`] defines a continuous

homomorphism

ρ` : GK → Aut(E[`]) ≈ GL(2,F`).

We are interested in the images of ρ` as ` varies.
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Let G` = ρ`(GK), so that G` is (non-canonically)

a subgroup of GL(2,F`).

If E has complex multiplication (over K), then

G` is essentially abelian. Let O = EndK(E) be the

endomorphism ring of E. Then G` has a natural

abelian subgroup H` with (G` : H`) ≤ 2, namely

AutO E[`] = (O/`O)∗. The group H` coincides

with AutO E[`] for almost all ` (i.e., all but finitely

many `).
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We are interested in the opposite case: that where

E has no complex multiplication. Let’s assume from

now on that we’re in this case.

The subject of this talk is the following theorem

of Serre, from his celebrated 1972 article “Propriétés

galoisiennes des points d’ordre fini des courbes

elliptiques”:

Theorem 1. For almost all `, ρ` is surjective.

In other words, there is a constant C(E,K) such that

G` = GL(2,F`) whenever ` is bigger than C(E,K).
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Serre began working on problems of this type in the

1960s. In article #70 of his Œuvres, “Groupes de Lie

l-adiques attachés aux courbes elliptiques” (1966),

he considered the `-adic representation of GK arising

from E/K, where ` is a fixed prime and E is again

has no CM. The image of this representation is a

subgroup G`∞ of GL(2,Z`). Serre proved that G`∞

is an open subgroup of GL(2,Z`) if the j-invariant

of E is not an algebraic integer. In his 1968 book

“Abelian l-adic representations and elliptic curves,”

Serre removed this hypothesis.
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Let’s go back to the mod ` situation. Because

of the Weil pairing, the determinant of ρ` is the

mod ` cyclotomic character χ` : GK → F∗
`. This

character is surjective for almost all `, e.g., whenever

` is unramified in K/Q. Hence, for almost all `,

G` = GL(2,F`) if and only if G` contains the kernel

of the determinant map, namely SL(2,F`).

Group theory shows that G` contains SL(2,F`) if

and only if (1) the order of G` is divisible by ` and

(2) the representation ρ` is irreducible.
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Already in 1968, Serre proved the irreducibility

of ρ` for almost all `: If E` is reducible, it has a

Galois-stable cyclic subgroup C` of order `. The

quotient E/C` is an elliptic curve over K with

good reduction exactly where E has good reduction.

Because E has no CM (over K), the curves E/C`

are pairwise non-isomorphic. This contradicts a

theorem of Shafarevich (1962) to the effect that

there are only a finite number of isomorphism classes

of elliptic curves over K with good reduction outside

a given finite set of places.
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Knowing that the subgroup G` of GL(2,F`) is

irreducible, let’s focus on the statement that it’s of

order divisible by `. Equivalently, we need to show

that the image G` of G` in PGL(2,F`) is of order

divisible by `. One thing we know is that G` has a

subgroup of size roughly `: Suppose that ` is large

enough so that there is an unramified place v|` of K

at which E has good reduction. Then the inertia

subgroup of G` for the place v is cyclic of order `−1
or ` + 1, depending on whether the reduction of E

at v is ordinary or supersingular.
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A consequence of this observation (for almost

all `) is that G` is not isomorphic to one of the

three exceptional groups S4, A4, A5. Adapting the

methods that study finite subgroups of GL(2,C),
one deduces (for large `) that G` is either cyclic or

dihedral if it has order prime to `.

Assume now that G` is irreducible and of order

prime to ` and that ` is large enough to avoid the

three exceptional groups.
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Then one of two things happens:

• G` is contained in the normalizer of a split Cartan

subgroup of GL(2,F`) (but not in the split Cartan

itself);

• G` is contained in the normalizer of a non-split

Cartan subgroup (and perhaps even in the Cartan

itself).

The split Cartan is conjugate to the group of diagonal

matrices. The non-split Cartan is like F∗
`2
.
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Schematically, we have G = G` ⊆ N , where N

is the normalizer of C. The index (N : C) is 2.

If G is not contained in C, then the character

ε : GK → G → N/C ≈ {±1} cuts out a quadratic

extension of K. This extension (as well as ε) depends

on `, at least a priori.

In order to understand the ramification of

the quadratic extension, we need to understand

ramification properties of ρ`.
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The representation ρ` can be ramified only at

primes of K dividing ` and at primes of K at which

E has bad reduction. We can and do replace K

by a small finite extension to ensure that E/K is

semistable. Then at primes of K, E either has good

or multiplicative reduction. In the latter case, the

local behavior of ρ` may be deduced from the theory

of the Tate curve. In particular, if v is a prime of

bad reduction and v is prime to `, then the inertia

group at v acts unipotently on E[`]: ρ`(σ) is of order

dividing ` if σ is in the inertia group.
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It follows from this that the character ε : GK →
N/C is ramified only at `. For primes v dividing `,

we infer that the image of the inertia group at v

in ρ` must be contained fully in C. If not, its image

in G` would be of order ≤ 2, contradicting what we

said before about its order being ` ± 1. Hence ε is

in fact unramified everywhere. Replacing K by the

compositum of its unramified quadratic extensions,

we can and will assume that ε = 1, i.e., that G`

is contained in C. Because of the irreducibility, C

must be a non-split Cartan subgroup of GL(2,F`).
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Let’s sum up so far: after replacing K by a

finite extension of K (which serves only to shrink

the G`), we have gotten into the situation where all

but finitely many G` are either GL(2) or non-split

Cartan subgroups of GL(2). We need to rule out the

case where infinitely many G` are non-split Cartans.

This bad case can never occur if E has

multiplicative reduction at some prime of K, i.e.,

the j-invariant of E is not an algebraic integer. In

that situation, almost all G` have order divisible by `.
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Serre’s idea was to think about the family of

groups G` arising from an elliptic curve with CM

over K. In that case, all the G` are abelian, and

all but finitely many of them are Cartan subgroups

of GL(2). However, half of the Cartans are split and

half are non-split: it depends on whether ` splits in

the field of muliplication.

Having lots of non-split Cartans but no split

Cartans was an anomaly that he succeeded in

exploiting.
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Before saying how he did this, I’ll toss in some

inputs from the 1980s. Let A be an abelian variety

over a number field K, and let ` be a prime. Let V`

be the Q`-adic Tate module attached to A: this is a

Q`-vector space of dimension 2 dim A with functorial

actions of GK and the ring Q` ⊗ EndK A. Faltings

proved in 1983 that GK acts semisimply on V` and

that the natural map Q` ⊗ EndK A ↪→ EndGK
V` is

in fact an isomorphism (Tate conjecture).
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Zarhin, in his 1985 Inventiones article “A finiteness

theorem for unpolarized Abelian varieties. . . ,”

established mod ` analogues of Faltings’s results. For

all sufficiently large `, GK acts semisimply on A[`],
and the rings EndGK

A[`] and (EndK A)/`(EndK A)
are naturally isomorphic.

Especially, if EndA = Z, then A[`] is absolutely

irreducible as a GK-module for all sufficiently large `.
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When A = E is our elliptic curve, the results of

Faltings–Zarhin rule out the possibility that G` is

a non-split Cartan subgroup infinitely often. The

endomorphism ring of E is Z, by hypothesis.

On the other hand, the non-split Cartan subgroups

of GL(2,F`) are quintessential examples of groups

whose actions on the underlying 2-dimensional vector

space are irreducible but not absolutely irreducible.
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Back to Serre’s 1972 article. Let Λ be the set

of primes ` for which the image of ρ` is a non-split

Cartan subgroup of GL(2,F`). We suppose that Λ
is infinite. Serre shows that the ρ` (` ∈ Λ) arise from

a collection of Großencharacters of type A0 of K with

values in some algebraic number field F . By results

that are due essentially to Weil, we may associate

a family ρ̃` of `-adic representations of GK to the

collection of characters. By comparing characteristic

polynomials, we recognize that the ρ̃` are in fact the

`-adic representations associated to E.
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The punchline is that the images of infinitely

many of the ρ` will then be split Cartan subgroups;

we take the ` that split completely in F (if I

remember correctly). We get a contradiction to

the irreducibility result of Shafarevich.
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In this subject, a great deal of activity has centered

around the following problem, which was suggested

initially by Serre: Consider elliptic curves E/Q and

the associated representations ρ` : GQ → GL(2,F`).
Is there an absolute constant C such that ρ` is

surjecive whenever ` > C. Here, the important

point is that C should be independent of E.
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A key result is Mazur’s 1978 theorem to the effect

that ρ` is irreducible for ` > 163. A consequence

of this theorem is that, for ` > 163, G` is either all

of GL(2,F`) or else is contained in the normalizer

of a Cartan subgroup of GL(2). In the latter case,

G` is not contained in the Cartan subgroup itself.

A great deal of work has been done to understand

and control situations where G` is contained in a

split Cartan subgroup. The non-split case seems to

be more difficult.
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